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Intermittent bursting events, similar to those characterizing the dynamics of near- 
wall turbulence, have been observed in a low-dimensional dynamical model (Aubry 
et al. 1988) built from eigenfunctions of the proper orthogonal decomposition 
(Lumley 1967). In  the present work, we investigate the persistency of the 
intermittent behaviour in higher- but still of relatively low-dimensional dynamical 
systems. In  particular, streamwise variations which were not accounted for in an 
explicit way in Aubry et aL’s model are now considered. Intermittent behaviour 
persists but can be of a different nature. Specifically, the non-zero streamwise modes 
become excited during the eruptive events so that rolls burst downstream into 
smaller scales. When structures have a finite length, they travel a t  a convection 
speed approximately equal to the mean velocity at the top of the layer (y’ 40). I n  
all cases, intermittency seems to be due to homoclinic cycles connecting hyperbolic 
fixed points or more complex (apparently chaotic) limit sets. While these sets lie in 
the zero streamwise modes invariant subspace, the connecting orbits consist of non- 
zero streamwise modes travelling downstream. Chaotic limit sets connected by quasi- 
travelling waves have also been observed in a spatio-temporal chaotic regime of the 
Kuramoto-Sivashinsky equation (Aubry & Lian 1992 a). When the limit sets lose 
their steadiness, the elongated rolls become randomly active, as they probably are in 
the real flow. A coherent structure study in our resulting flow fields is performed in 
order to relate our findings to experimental observations. It is shown that streaks, 
streamwise rolls, horseshoe vortical structures and shear layers, present in our 
models, are all connected to each other. Finally, criteria to determine a realistic value 
of the eddy viscosity parameter are developed. 

1. Introduction 
Despite the contribution of many researchers, the mechanism of turbulence 

production in near-wall turbulence is still poorly understood. However, it seems well 
established that a large fraction of the production occurs during violent explosions 
(or ‘bursts ’) of otherwise quiescent streamwise streaks (see for example Cantwell 
1981). Streaks, visualized by Kline et al. (1967) using hydrogen bubbles, have been 
associated with streamwise rolls (Bakewell & Lumley 1967 ; Blackwelder & Eckelman 
1979; Kim 1985; Adrian, Moin & Moser 1987; Moin & Moser 1989). The structure of 
near-wall turbulence has received considerable interest and significant progress has 
recently been achieved with the generation of highly detailed numerical simulation 
data (Moin & Kim 1982; Spalart 1988). Nevertheless, the complexity of the data has 

-f Present address : Department of Applied Mechanics, Indian Institute of Technology, New 
Delhi 110016, India. 
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made their interpretation extremely difficult in terms of coherent structures and 
their dynamics (see e.g. the detailed kinematical study of Robinson, Kline & Spalart 
1990 who analysed Spalart’s 1988 numerical data). It has recently become obvious 
that there is a need for simplified numerical simulations and models. Examples of 
such models are those of Jimenez et al. (1988), Landahl (1990) and Jimenez & Moin 
(1990). In  the latter, the authors carry out an extremely reduced simulation in which 
the spanwise periodic length is about 100 wall units (i.e. the average distance 
between two streaks) so that one streak can be isolated and studied in detail. The 
striking result of their study is that this course simulation generates approximately 
correct first- and second-order statistics. 

Another simplified model is that of Aubry et al. (1988) who derive a set of ten 
ordinary differential equations (referred to as the 10D model below) for the dynamics 
of infinitely long streamwise rolls in a spanwise periodic box of 333 wall units, over 
a vertically bounded domain of 40 wall units. Not only can the rolls, extracted from 
experimental two-point correlations via the proper orthogonal (or Karhunen-Lokve) 
decomposition, reproduce approximately correct statistics, but they also exhibit 
interesting intermittent dynamics whose nature resembles that of the bursting event 
experimentally observed. In  dynamical systems terminology, these cyclic dynamics 
are due to the presence, in phase space, of an attracting heteroclinic cycle connecting 
two hyperbolic fixed points, or saddle points. The solution spends a relatively long 
time near one of the (unstable) steady solutions, oscillates and suddenly bursts 
through a brief jump to another quiescent state, only translated in the cross-stream 
direction with respect to the first one. In  physical space streamwise rolls, quiescent 
for a long time, start to oscillate, suddenly burst and re-form. Although, formally, 
the interburst time keeps increasing as the solution approaches the (attracting) 
heteroclinic cycle (on which a fixed point can be reached only after an infinitely long 
time), the presence of noise or ‘external’ forcing equilibrates the time occurrence of 
the eruptive events. (A main source of noise in Aubry et al.’s 1988 model is identified 
with the external-layer jitter which enters the dynamical system as the fluctuating 
pressure term at the upper boundary.) Then, the dynamics repeats itself an infinite 
number of times, consistently with the bursting event viewed as a cycle, including 
both the secondary instability mechanism and the roll reformation. Although the 
presence of heteroclinic cycles has not yet been identified in experimental data, the 
distribution of bursting events has been observed to display exponential tails (Kim, 
Kline & Reynolds 1971; Rogard & Tiederman 1986) which is, as shown by Stone & 
Holmes (1989, 1990), characteristic of saddle-saddle connections in the presence of 
external random or regular forcing. 

Following this pioneering work, a number of studies related to heteroclinic cycles 
appeared. The first was that of Guckenheimer & Holmes (1988) who addressed the 
intriguing issue of the stability of heteroclinic cycles, which are known to be unstable 
to small perturbations (see e.g. Guckenheimer & Holmes, 1983). They showed that 
saddle-saddle connections can be stabilized by the presence of symmetries, as is 
obviously the case in Aubry et aL’s (1988) study in which the relevant symmetry 
group is 0(2 ) ,  consisting of (statistical) spanwise reflections and translations.? 
Indeed, heteroclinic cycles in the presence of symmetries have been observed by 
Busse & Heikes (1980) in a convective rotating layer, Proctor & Jones (1988) in a 
two-mode model of BBnard convection and Hyman, Nicolaenko & Zaleski (1986) in 

t ‘Statistical symmetry’ refers to a property of the statistics of the flow, in particular the two- 
point correlation tensor. While the equations of motion are also invariant under the symmetry, the 
instantaneous flow, at  a given time, in general, is not. 
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the numerical solutions of the Kuramoto-Sivashinsky equation with periodic 
boundary conditions. The existence and stability of such solutions in the context of 
Aubry et aL’s (1988) boundary-layer study was proved by Armbruster, Guckenheimer 
& Holmes (1988) for a 4D model (a subset of the lOD model described above). Later, 
it was shown by Campbell & Holmes (1991) that heterorlinic cycles still exist in a 6D 
model and become unstable to travelling and modulated travelling waves. Recently, 
saddle-saddle connections have been discovered in many fluid flow systems. For 
example, Nicolaenko & She (1992) observe a bursting mechanism based on 
symmetry-equivariant cycles (the symmetry involved is SO(2) x D,) in two- 
dimensional Kolmogorov flows, Leibovich & Mahalov (1993) show numerical 
evidence of heteroclinic connections in several X0(2)-equivariant (i.e. translation 
invariant) systems modelling wave interactions among invariant subspaces of the 
Navier-Stokes equations, and Mullin & Darbyshire (1989) demonstrate the presence 
of heteroclinic and homoclinic cycles in an RO(Z)-equivariant Taylor-Couette 
apparatus with rotating endplates. Finally, we should mention the ‘ heteroclinic 
connections to infinity’ which connect a finite part of the phase space to infinity of 
Newell, Rand & Ruse11 (1988) and represent the principal contributor to the 
dissipation rate. 

As far as the importance of heteroclinic cycles for the near-wall dynamics is 
concerned, an open issue in Aubry et aZ.’s (1988) work, which we address in this paper, 
is the robustness of the proposed intermittency mechanism to the order of 
truncation, as one knows that the behaviour of a finite- or low-dimensional 
dynamical system may be a mere artifact of the truncation (see e.g. Curry 1978; 
Curry et aZ. 1984 regarding Lorenz’s model as an approximation to the Boussinesq 
equations). Although one may argue that symmetry-induced phenomena should 
persist a t  any resolution which preserves the symmetries, such an assertion 
concerning intermittency is worth investigating. Moreover, as recalled above, 
streamwise variations, which are obviously important in a fully developed, turbulent 
flow are neglected in Aubry et aZ.’s (1988) model. They may have a crucial role in a 
more complete resolution, as they impose, for instance, new symmetries to the 
system, namely an SO( 2)-invariance due to the streamwise homogeneity of the flow. 
For example, propagation of the flow patterns downstream is certainly a consequence 
of this symmetry ; the question is then : Can intermittency and propagation co-exist ? 
If yes, how is intermittency modified by propagation Z 

The paper is organized as follows. We recall the equations of motion for the 
boundary-layer flow in the next section, and the results from the 10D model of Aubry 
et al. (1988) in $3. In $4, we discuss the necessity of adding non-zero streamwise 
modes. In  $5, we analyse the set of equations for any number of modes in terms of 
invariant subspaces and their relation to the statistical symmetries of the flow. The 
results of the integration of 32-, 54- and 64-dimensional models (including up t o  six 
spanwise, three streamwise and two normal modes) are presented in $6. In $7 ,  we 
extract the physical ‘coherent’ structures from the flow fields thus obtained and 
show that low-speed streaks, ejections, sweeps, horseshoe vortical structures and 
near-wall shear layers, observed in experimental studies, are all present in our 
models. Finally, criteria to deduce a realistic value for the eddy viscosity parameter, 
used in the Heisenberg model to represent the action of unresolved scales onto 
resolved modes, are developed and investigated in $8. 

Although some preliminary results from this study were descrihed in earlier 
publications (Aubry & Sanghi 1989, 1991; Sanghi & Aubry 1991), many further 
details are given in this paper. 
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2. Equations of motion 
We recall in this section the modelling of the flow by deriving sets of ordinary 

differential equations from the Navier-Stokes equations (Aubry 1987 ; Aubry et al. 
1988). 

2 , l .  The proper orthogonal decomposition 

The model uses the proper orthogonal decomposition (POD) (LoBve 1955) - also 
called the Karhunen-Lokve expansion or principal component analysis - which was 
introduced and developed in turbulence by Lumley (1967, 1970, 1981) to identify 
coherent structures in a random flow. Specifically, the technique extracts 
deterministic functions $(“)(x) from a set of realizations u,(x) of an energy-integrable 
random velocity field such that 

R(x ,  x’) $(n)(x’) dx‘ = A(n)$(n)(x),  ( 1 )  s 
where R(x,  x’) is the autocorrelation matrix (u,(x) u,,,(x’)), (the angle brackets 
denoting the ensemble average over various realizations w ) .  A significant feature of 
the decomposition, used as a partial justification for a truncation of dynamical 
systems based on such modes, is the fact that the convergence is optimally fast 
in quadratic mean, the eigenvalues being ordered in a decreasing manner 
h(l) 2 A@) 2 . . . . Under the assumption of the ergodicity of the flow (often made if the 
flow is statistically stationary) (Aubry et al. 1988; Sirovich 1987), one can substitute 
the ensemble average by the time average and put the time information in the 
coeffcients a(n) of the expansion. This assumption, as well as the energy integrability 
of the flow (recall that there is no proof of the energy integrability of three- 
dimensional flows) is not needed if one considers deterministic decompositions of 
functions defined on a space-time domain X x T (Aubry, Guyonnet & Lima 1991, 
19923; Aubry 1991) into orthonormal functions in a Hilbert space H(T)  and 
orthonormal functions in a Hilbert space H ( X )  . These biorthogonal decompositions 
are useful tools for the treatment of spatio-temporal dynamical systems (Aubry, 
Guyonnet & Lima 1991, 1992a; Aubry & Lian 1992a; Slimani et aE. 1992). 

The three-dimensional shear flow of the wall region is considered homogeneous in 
the streamwise (xl or x) and spanwise ( x 3  or x )  directions, stationary in time and 
inhomogeneous in the normal direction (x, or y). As is common in numerical 
simulations, we restrict our study to a periodic box in the x1 and x3 directions, of size 
L,xL,. In  this case, it  is well-known (Lumley 1967) that the proper orthogonal 
modes factorize into Fourier modes in the two homogeneous directions x1 and x3 and 
(eigen)functions in the normal direction x2.  The velocity field fluctuation is then 
expanded as 

where 1, k are the streamwise and spanwise wavenumbers (ul, u2, u3 also denoted u, v, w 
below). The eigenfunctions $p), k representing the vector ( I ,  k ) ,  are extracted from 
the equation 

/ @ i j k ( x , ,  xi) @ ) ( ~ i )  dx’, = @) $ l r ) ( ~ ~ ) ,  (3) 

where Qij denotes the Fourier transform of the autocorrelation tensor in the x1,x3 
directions a t  zero time lag: Rij(xl --xi, x,, xi, Further details can be found 
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FIQURE 1. Real (a )  and imaginary ( b )  parts of the first component of the POD eigenfunctions as 
functions of x2 for different wave vectors k :  (i) (0 ,3  x ; (iv) 
(0,1.2 x ; (v) (0,1.5 x ; (vi) (1.5 x 3 x ; (vii) (1.5 x 6 x ; (viii) 
(1.5 x 9 x (ix) (1.5 x 1.2 x (x) (1.5 x lo-', 1.5 x from the experimental 
data of Herzog (1986). 

; (ii) (0,6 x ; (iii) (0,Y x 

in Aubry et al. (1988). Let us only recall here, as it will be useful in $8, that the 
eigenfunctions are orthogonal : 

(4) 

and that the time-dependent coefficients a p ) ( t )  are uncorrelated (the angle brackets 
denote the ensemble average, identified here with the time average) : 

(5)  

As in Aubry et aE. (1988), the flow investigated is the wall region (0 < xi < 40) of 

(up' up,*> = A; a,, akk. 



460 X. Sanghi and N .  Aubry 

YIGTJRE 2. In hj;L as a function of n for different wave vectors (I, k )  from the experimental data of 
Herzog (1980). The spanwise wavenumbers are the same as in figure 1 ; (a)  1 = 0, ( b )  1 = 1.5 x 

a pipe flow (Herzog 1986) of Reynolds number 8750, based on the centreline mean 
velocity and the diameter of the pipe. Figure 1 displays selected functions $ii)(z2) and 
figure 2 the energy spectrum A p )  versus n for various wavenumber pairs k = (kl, k 3 ) .  
It is interesting to  note that spectra tend to decay exponentially fast, which justifies 
the severe truncations in the normal direction (n = 1 in Aubry et al. 1988 and n = 1,2  
in this paper). This also indicates that there may exist a self-similarity among the 
modes, due to the existence of a spatio-temporal symmetry (Aubry et al. 1992a, b ;  
Aubry & Lian 1992) which will be investigated in future work. We have carried out 
integrations of dynamical equations whose coefficients have been computed from the 
database generated by the direct numerical simulation of turbulent channel flow of 
Kim, Moin & Moser (1987) a t  a Reynolds number of 6600, based on the mean 
centreline velocity and channel width. Since we get similar results in both cases, we 
shall present those obtained from the experimental data only. 
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2.2. The  equations of motion 

The general dynamical equations are the same as in Aubry et al. (1988, Appendix A) 
and are obtained by a Galerkin projection of the Navier-Stokes equations onto the 
POD eigenmodes q5p)ezlri'x (x representing the vector (xl, x 3 ) )  expanding the 
fluctuating field only. They consist of sets of ordinary differential equations (ODEs) : 
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( 6 )  

where L = (L,L3)i, including linear, quadratic and cubic terms whose coefficients are 
recalled in Appendix A. The quadratic terms represent the energy transfer between 
the different eigenmodes, while the cubic terms, resulting from the interaction 
between the Reynolds shear stress and the fluctuation (see equation (15) in Aubry 
et al. 1988), control the amplification of the structures by weakening the mean velocity 
profile as the fluctuation grows. Although the pressure term in (6) (the hat denotes 
the Fourier transform in the xl, x, directions) usually disappears in Galerkin 
projections, its contribution from the upper boundary ( X z  = 40) remains due to the 
restriction of our study to the wall region. Nevertheless, since this term is small and 
its action on intermittent dynamics is clearly understood (see the introduction) i t  is 
henceforth omitted. When streamwise variations are considered, the term ui, U in 
the Navier-Stokes equations introduces extra linear and cubic terms in the ODEs 
representing the downstream propagation of the flow. 

Since the set of ODEs (6) is necessarily truncated, the energy transfer to the 
unresolved scales is represented by a simple generalization of the Heisenberg spectral 
model as it is commonly used with success in large-eddy numerical simulations. The 
Reynolds stress tensor of the unresolved scales is assumed proportional to the strain 
rate tensor of the resolved scales: 

T i j >  OC - vT(u i< , j+u j< ,%) j  ( 7 )  

where > and < represents the unresolved modes. vT is an approximate transport 
coefficient (eddy viscosity) proportional to the product of the characteristic 
lengthscale, l , ,  and the velocity scale, u,, of the unresolved modes: 

vT = au, I,. (8) 
The coefficient a is referred to as the Heisenberg parameter and its value 

determines the magnitude of the energy loss to the unresolved modes. This 
representation changes, on the one hand, the linear terms by a modified viscosity, 
and, on the other hand, the quadratic terms by the addition of a small pseudo- 
pressure term. 

Sirovich, Ball & Keefe (1990) analyse Keefe, Moin & Kim's (1987) numerical 
simulation of a turbulent channel flow at Reynolds number 3000 (based on the 
channel width) using the proper orthogonal decomposition. Since the full velocity 
field u(x,  t )  was available (on a coarse grid), they extract both the eigenmodes and the 
time-dependent coefficients. Their main finding is that all zero streamwise 
wavenumber modes are non-propagating modes while all non-zero streamwise 
wavenumber modes propagate. We will comment more on these results in $6. More 
recently, Zhou & Sirovich (1992) derived dynamical systems for the wall region, 
based on the previous full channel POD modes which are linearly mapped to those 
of the wall region. Although their motivation is to cancel the pressure term at the 
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upper edge of the layer, they have to input the two-point correlation tensor for the 
whole channel. In  addition, the existence of a linear mapping when a finite number 
of modes is involved needs further investigation (for further comments, see Berkooz 
et al. 1992). Selecting the same truncation as in Aubry et al. (1988), they recover the 
basic intermittency mechanism which was however lost as they added a non-zero 
streamwise mode. 

3. Results of the integration of the ten-dimensional model 
In Aubry et aZ.’s (1988) study, the expansion of the velocity field is severely 

truncated to the first eigenmode (n = l ) ,  six (positive) spanwise Fourier modes with 
a periodic cross-stream box length of L’; = 333 wall units and the zero streamwise 
Fourier mode. This led to the 10D model discussed above, which is invariant under 
the action of the O ( 2 )  symmetry group as a consequence of the statistical invariance 
of the boundary-layer flow in its turbulent stage under spanwise translations and 
reflections. It is interesting to note that a finite-dimensional Galerkin projection of 
a partial differential equation (PDE) onto POD eigenmodes does not necessarily 
preserve the symmetries of the original PDE. This problem can be solved by 
involving an average over the symmetry group in the decomposition technique (l), 
a procedure proposed by Aubry, Lian & Titi (1993) for this purpose. In  the present 
study, we do not encounter this difficulty since the symmetries are systematically 
preserved because they are inherent to the Fourier components of the eigenmodes. 
This remark is still valid with the inclusion of downstream variations, which 
introduces streamwise symmetries (see below). 

We now recall typical solutions observed in the 10D model (Aubry et al. 1988) since 
similar, but more complicated, behaviour will appear in higher-dimensional models. 
For a > 2.41, the zero fixed point (steady solution) is the global attractor. For 
2.3 < a < 2.41 and 1.61 < a < 2.3, there is a circle (namely an S1-family due to the 
translation symmetry) of attracting fixed points in the even spanwise Fourier mode 
(2/4) subspace. Each fixed point represents two pairs of steady counter-rotating 
streamwise rolls in the periodic box of length Li = 333 which correspond to streaks 
of slow fluid going away from the wall. For a between 1.3 and 1.61, the fixed points 
destabilize and intermittent solutions appear. These belong to an S1-symmetric 
family of heteroclinic cycles connecting saddle points which are out of phase on the 
circle of fixed points by x. A similar window of heteroclinic bursting solutions exists 
for values of a lying between 2.0 and 2.3, but this type of intermittency is simpler, 
involving no oscillatory motions in the unstable directions of the fixed points. From 
here on, we refer to  this window of intermittency as window I and to the previous one 
as window 11. For a between 1.0 and 1.3, the system displays a complex behaviour 
possibly including chaotic motions. When a decreases below 1 .O, modulated 
travelling waves and travelling waves are observed, representing rolls propagating 
across the flow. 

I n  previous studies, the expansion was truncated to the zero streamwise Fourier 
mode, hence preventing any x1 dependence of the velocity and pressure, based on the 
experimental observation that the main structures of the flow (streaks) are elongated 
streamwise patterns. Paradoxically, this does not represent a fluid flow with no 
streamwise variations, i.e. a solution of the Navier-Stokes equations with a/ax, = 0. 
If this were the case, then as pointed out by Moffatt (1990), the streamwise velocity 
component would decouple from the spanwise and normal components and 
turbulence would simply decay. It turns out that, since the real flow is three- 
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dimensional, the eigenmodes, in particular those corresponding to n = 1 and zero 
streamwise wavenumber, keep track of this three-dimensionality and lead to a 
reasonable approximation of the Reynolds shear stress (u ,  u2)  in the wall region. The 
latter, indeed, is different from zero as both components qbl,qbz keep the same sign 
across the layer, independently of the cross-stream wavenumber (Aubry et al. 1988). 
This is also the reason why cubic coefficients in the ODES are all negative, making 
the attractor globally stable, and why the turbulence production term remains 
positive, maintaining the fluctuation alive. As noticed by Berkooz, Holmes & 
Lumley (1991), this is equivalent to a closure assumption. However, a striking 
feature of the model is that, even if one forces the streamwise and cross-stream 
fluctuations to evolve independently by decoupling the eigenfunctions ( $lk, $2L ,  qb,,) 
into ($lk, 0 , O )  and (0, $2k, $ 3 k ) ,  the turbulence decays in an intermittent fashion 
(Berkooz et al. 1991). 

4. Deficiency of the ten-dimensional model 
Although the 1OD model could reproduce many of the qualitative phenomena 

experimentally observed in the dynamics of coherent structures in the wall region, 
the representation was rudimentary and limited in several ways. There is no doubt 
that  more modes than those retained in this first model are dynamically active in the 
real flow and the question is to investigate how these extra scales modify the basic 
intermittency. A priori, the crudest approximation in the 10D model originates in 
the lack of streamwise variations, as we now discuss. 

A weakness of the zero streamwise mode model is that it does not reproduce the 
right distribution of energy among the three components, as compared with the real 
flow. Too much energy is contained in the streamwise component. A detailed study 
has been performed by Aubry (1987) to examine the supply of energy as extra modes 
are added. It is shown there that the first eigenmode (n = 1) retains a t  least 65 % of 
the energy in all three directions. We are more concerned about the truncation of the 
Fourier series. Reduction from 17 to 6 spanwise modes within the same periodic cell 
does not make a significant difference across the whole layer. However, addition of 
other streamwise wavenumbers (even one) helps considerably in recovering a more 
correct energy distribution and the best repartition is obtained when the streamwise 
length L, is 666 wall units. 

I n  addition, physical phenomena such as the downstream convection of finite- 
length structures and the possibility of streamwise instabilities should lead to some 
interesting phenomena during the bursts. 

5. Properties of the ODEs 
The set of dynamical equations for the general case are given in Aubry et al. (1988). 

The properties of the ODEs truncated with one eigenmode (n = l), any number Nl 
of positive streamwise Fourier modes: O,K,, 2K,, ... (Nl - 1)K,  and any number N3 
of positive spanwise Fourier modes: 0 , K 3 ,  2K,, .  . , (N, - 1)K ,  are discussed in this 
section, 

5.1. Complexity due to the presence of non-zero streamwise wavenumbers 
The addition of more streamwise modes makes the system much more complex. 
First, it  increases the number of unknowns. The fact that the velocity field is real 
implies that ap) ( t )  and a l ! ( t )  are related and thus we do not consider the equations 
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for u ~ , - ~  ( k  non-negative) (where we have dropped the superscript (1) denoting 
7~ = 1). Nevertheless, every extra streamwise Fourier mode 1 (and of course its 
counterpart - 1 )  adds not only the modes uz,k (with E > 0) but also k .  

Consequently, the number of new complex unknowns included in the system by 
addition of an extra mode I is W3- 1 (not just N 3 ) ,  where N3 is the number of resolved 
positive spanwise modes. A system including Nl streamwise modes contains 
N3(2N1- 1 )  -Nl (that is 16 for Nl = 2, N3 = 6) complex equations. 

In  a zero streamwise mode model, owing to symmetry properties of the two-point 
correlation tensor at zero time lag, the components of the eigenfunctions are either 
real or imaginary which makes all the coefficients of the equations real. This is no 
longer the case when streamwise variations are included. 

The addition of streamwise Fourier modes introduces relations among some of the 
coefficients of the differential equations. These symmetries are essential for the 
properties of the equations, leading to the invariance of the ODEs under the action 
of the O ( 2 )  x SO(2)  symmetry group, consisting of spanwise translations and 
reflections (as in the 10D model) and streamwise translations. They are the direct 
consequence of the symmetries of the eigenfunctions and therefore come from the 
properties of the autocorrelation tensor, which are due to the fact that the flow itself 
satisfies statistically the symmetries of the Navier-Stokes equations (subject to the 
wall boundary conditions). Such relations were derived in Auhry (1987) and are not 
reproduced here; they sometimes involve up to 108 terms. 

5.2. Properties of the equations 
The general properties of the equations derived for a system truncated to n =  1 
including any number of streamwise and spanwise Fourier modes are described in 
Aubry (1987). Because of their considerable importance to the types of solutions 
observed, they are briefly recalled here. 

The contribution to the turbulence production of all Fourier mode pairs (I, Ic) of the 
first eigenmode (n = 1 )  is positive according to the experimental data. This positive 
contribution is due to the opposite signs of the streamwise and normal components 
of the first eigenmode. This has two consequences: First, the real part of the linear 
term originating from the mean pressure gradient is positive and represents a supply 
of energy from the mean flow. Second, the Reynolds shear stress is negative and 
therefore the real parts of the cubic coefficients are also negative, which guarantees 
the global stability of the solution. As in the 10D model, this reflects that, for the 
streamwise elongated vortices represented by the term n = 1, the mean flow 
stabilizes the perturbation as it grows and, conversely, the growing perturbation 
reduces the mean velocity gradient. 

The ODES have several important invariant subspaces which are very general and 
come from the intrinsic nature of the equations, regardless of the number of spanwise 
and streamwise wavenumbers. Since both the linear and cubic terms involve az,lc, 
these terms are irrelevant to the existence of the invariant subspaces. 

The first invariance reflects the property of homogeneity of the flow in the 
spanwise and streamwise directions, that is the statistical invariance under 
translation in these two directions. The ODEs are invariant under the trans- 
formation : alk + alk ei(zo+ka). 

Second, the zero streamwise wavenumber subspace 1 = 0 is an invariant subspace. 
If a variable al,*(Z =l 0) is initially zero, it remains zero since the triplet 
(I =t= 0, I’ = 0,l” = 0) does not constitute an interacting triad. This subspace is 
2(N3 - 1) (that is 10 for N3 = 6) dimensional. Similarly, we can use the same argument 
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to show that the subspace k = 0 is an invariant 2(N1- 1 )  (that is 2 for N I  = 2) 
dimensional subspace. 

Other important subspaces are the k-even subspace and the 1-even subspace, which 
can be seen by considering a triad (Aubry 1987). An even mode initially zero can 
be excited by non-zero odd modes, making the odd subspace non-invariant while 
odd modes, initially zero, will remain zero, making the even subspace invariant. 
The dimension of the I%-even subspace is 2((2N1-1)[&V3+l)]-N,) (that is 14 
for Nl = 2, N3 = 6) while the dimension of the l-even subspace is 
2((2[+(N1+1)]-1)N3-[+(N,+1)1) (thatis 10forN1=2,h73= 6.inthiscase,  theeven 
streamwise mode subspace is the zero streamwise mode subspace). Here 1x1 indicates 
the integer part of x. 

= a& which, in the physical space, 
corresponds to structures invariant under reflection about a plane x3 = 0. This can 
be easily seen by expanding the equations ui(x3) = ei ui( -x3)  (where 6, is equal to + 1 
if i = 1 or 2, - 1 if i = 3) in terms of the expansion (2) and using the relations between 
al,-k and u ~ , ~ .  The dimension of this subspace is 2(N1N3- 1 )  (that is 22 for Nl = 2 ,  
N3 = 6). Note that integrating the set of ODES in this subspace is equivalent to  
imposing the cross-stream reflection symmetry of the flow instantaneously. Since we 
allow the flow structures to  evolve asymmetrically, we deal with the complete 
2((2N1- l)N3-Nl) (that is 32 for Nl = 2, N3 = 6) dimensional dynamical system. 

I n  the next section we present detailed results on integration of systems of 
equations with Nl = 2 and Nl = 3. We restrict the number of spanwise modes to 6. 
This leads to systems of dimension 32 (forNl = 2) and 54 (for Nl = 3). One important 
consequence of the symmetries listed above is that some low-order models are 
invariant subspaces of higher-order ones. For example, as we have shown above, the 
1 = 0 space is an invariant subspace. Consequently, if we start from a 32- or 54- 
dimensional system with zero values for all non-zero 1 values of up) then these 
coefficients will remain zero for ever and the solutions obtained are those of the 1OD 
system (they are minor differences due to the Heisenberg model). 

The last invariance is that of the subspace 

6. Results of numerical simulations 
Numerical integrations have been carried out for models which include 1 and 2 

non-zero streamwise modes and 1 or 2 modes in the normal directions, keeping 6 
spanwise Fourier modes with a periodic box length Li  = 333. A Runge-Kutta- 
Verner method of fifth- and sixth-order was used in double-precision arithmetic and 
these computations were carried out on an IBM 3090. The algorithms were checked 
by computations starting from initial conditions chosen to satisfy the various 
invariant subspaces discussed in $5.2. 

6,1. 32-dimensional model 

We now outline the behaviour of typical solutions of systems including 1 normal 
mode and 2 streamwise Fourier modes with a pcriodic box length L: = 668 as the 
Heisenberg parameter 01 is reduced (we have not noticed the preseiice of various 
attractors in the phase space, other than those induced by the symmetry groups). 
When a is larger than 1.53, the trivial solution is the global attractor. For 
1.51 < a < 1.53 we observe a non-zero fixed point in the (1 = 0, even k )  subspace. As 
a decreases from 1.50 to 1.22, the solution becomes intermittent in the zero 
streamwise mode subspace. This intermittency is similar to window I of inter- 
mittency present in the 10D model. In  particular, bursts occur on a fast timescale 
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FIGURE 3. Typical solution in window I11 of intermittency from the 32D system. Time series of the 
real parts of a,,, ao2, ao3, ao4, uo5, a_,,, a-12, a-14, a-15 for the parameter value ct = 0.87, for a time 
interval At+ = 5181. 

and do not involve any oscillatory motions. For 1.06 < a < 1.22, the solution, which 
is steady again, is a combination of the modes a,,, and ao,4 only. Another window of 
intermittency. similar to that of window TI of the 10D model, occurring in the zero 
streamwise mode subspace, appears for 0.91 < a < 1.06. The uo,2/ao,4 mixed modes 
destabilize in the a,,, Jao, Ja0, directions. This solution encounters bursts involving 
growing oscillatory motions of the spanwise even and odd modes, corresponding to 
cross-stream oscillations of the streamwise rolls followed by a sudden breakup. So 
far, the sequence and nature of the solutions are very similar to those observed in the 
lOD model, indicating that the zero streamwise mode subspace is attracting. In these 
solutions, the non-zero streamwise modes are inactive after a very short transient 
during which they decay to zero. As a: decreases further, the invariant zero 
streamwise subspace becomes unstable, namely streamwise instabilities occur. For 
0.80 < a < 0.91, we observe a third window of intermittency. Between the bursts, 
the solution remains quasi-steady as in the first and second windows, staying in a 
neighbourhood of one equilibrium in the zero streamwise/even spanwise subspace. It 
then changes significantly during the bursts due to the participation of all modes to 
the dynamics. I n  the figures, we have normalized the ak values with the square roots 
of the eigenvalues A$. Figure 3 reproduces time series for the real part of a few ak 
values, and some selected projections of the phase space dynamics in figure 4 show 
evidence of a heteroclinic cycle connecting the two fixed points of the S1-circle of 
solutions (corresponding to the burst of figure 3).  For 0.50 < a < 0.80, the solution 
is attracted to the zero streamwise subspace where it becomes much more complex, 
apparently chaotic. The transient shows that the heteroclinic cycle starts travelling 
and becomes unstable. At this time, the non-zero streamwise modes collapse. For 
lower values of a,  0.1 < a < 0.4, the ( I  = 0)-subspace is unstable again and a fourth 
window of intermittency arises, the time series for which are shown in figure 5.  In  the 
intermittent behaviour previousIy described (first three intermittency windows), the 
solution between the bursts is always quasi-steady due to the proximity of a fixed 
point. The new solution is different in nature: it is very disorganized, apparently 
chaotic between the bursts in the zero streamwise subspace and the degree of 
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FIGURE 4. Selected projections of the phase space dynamics in window 111 of intermittency for the 
321) system a t  the parameter value a =  0.87, corresponding to the time series o f  figure 3. (a)  
Projection onto the (Re (ao2), Re (a,,))-plane showing one bursting event as the passage of the 
solution from one fixed point to the other. ( b )  Projection onto the (Re (a-ll), Re (a-,,))-plane 
showing one bursting event as a growing instability from, and the return to, the saddle fixed point. 

complexity increases during each burst due to the sudden excitement of the non-zero 
streamwise modes of relatively high-frequency motions (compared with spanwise 
motions, see figures 3, 46). As expected, in all the solutions involving non-zero 
streamwise modes, the frequencies are proportional to the wavenumber magnitude, 
a feature characteristic of travelling waves (as also found - see 93 - in the 10D model 
for low values of a although these waves propagate across the layer). This travelling 
solution propagates downstream at a convection velocity u, = 16 (wall units), which 
is approximately equal to the mean velocity at the top of our layer (y+ = 40). 'It is 
interesting to note that the downstream propagation speed is much faster than the 
spanwise oscillation speed, on the order of 0.4 (wall units). Travelling solutions are 
a consequence of the streamwise SO(2) symmetry group invariance of the ODES 
which is statistically satisfied by the solution itself (as in the real turbulent flow). 
Prom a physical viewpoint, i t  simply corresponds to the downstream advect'ion of 
the structures by the mean flow (and is not, a priori, related to  the existence of 
individual travelling waves such as those present in periodic solutions close to the 
instability onset, at  low Reynolds number, as conjectured by Sirovich, Ball & Keefe 
1990 and Zhou & Sirovich 1992). We speculate that the cause of the intermittency 
is the presence of an attracting heteroclinic cycle (in a generalized sense) which 
connects hyperbolic, apparently chaotic, limit sets. A projection of the phase space 
dynamics onto (Re(a-,,),Re(a-,,)) is similar to that of figure 4 ( b )  in the third 



468 8. Sanghi and N .  Aubry 

-4  

m 2  

0 
a" 

2 - 2  

$ 0  
2 -2  

-4  

N 2  

-4  

Time 

- 1  I 

- 2 '  I 
Time 

FIGTJRE 5. Typical solution in window I\' of intermittency for the 327) system a t  the parameter 
value CY = 0.2, for a time interval At+ = 9420. Time series of the real parts of a01 ,uOZ,~03r  
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Heisenberg parameter a Hchaviour 

a 2 1.53 
1.53 > a > 1.51 
1.51 > a > 1.22 

1.22 > a > 1.06 
1.06 > a 2 0.91 

trivial solution: n'l,k = 0,  V ( k ,  1 )  is the global attractor 
stable fixed point : aos, an4 + 0, other modes are zero 
intermittency in the uo,k subspace: a l ,k  = 0,  Vk  aOz,ao4 =+ 0 ;  ao,k = 0, 

stable fixed point : aog,  uo4 + 0, other modes are zero 
intermittency in the u , ~ , ~  subspace: al,k = 0,  V k ;  aOP,aO4 + 0 ;  

Vk + 2,4 between bursts; uo,k + 0, Vk during bursts (no oscillat,ions) 

= 0,  
Vk + 2 , 4  between bursts: ao,k + 0,  Vk during bursts (ao1,ao3,ao5 
oscillate) 

intermittency in the full space : an2, au4 $. 0 ;  = 0 ,  Vk + 2,4 be- 
tween bursts; az,k + 0,  Vl, k during bursts 

complex behaviour in the uo.k subspace: al,k = 0, V k ;  ao,k + 0,  Vk 
intermittency in the full space : complex behaviour in the aO,k sub- 
space between bursts; u , ~ , ~  + 0, V(E,k) during bursts 

complex behaviour in the full space: az,b += 0,  V(1, k )  

0.91 > a > 0.8 

0.8 > a > 0.5 
0.4 > a > 0.1 

0.1 > a 

TABLE 1. Qualitative dynamical behaviour in the 32-dimensional system. 
0 denotes the zero complex number. 

intermittency window. The saddle, however, is no longer a fixed point but a complex 
orbit lying in the zero streamwise subspace and it resembles the coniplex solution 
obtained when the initial condition lies in the zero streamwise subspace. For an 
initial condition outside of any invariant subspace, the solution leaves the IOD zero 
streamwise subspace, starts a brief travelling excursion in the full 32D phase space 
and comes back to  the zero streamwise subspace. The homoclinic connection of 
apparently chaotic sets by travelling orbits has also been observed in a 
spatio-temporal chaotic regime of the Kuramoto-Sivashinsky equation (Aubry & 
Lian 1992~).  I n  table 1,  we summarize the different solutions observed in this model. 

Since the first three types of intermittency appear through bifurcations from fixed 
points, we investigate the nature of these bifurcations. This was done in Aubry et al. 
(1988) for the 10D dynamical system in which the second window of intermittency 
appeared through a subcritical Hopf bifurcation. As in their study, we can limit our 
stability calculation, without loss of generality, to one of the two real fixed points : 
ao2 = -rZ,uo4 = -r4, where rz and r4 are strictly positive values and all other 
components are zero. The results are identical for any pair of diametrically opposite 
fixed points of the symmetric S1-circle. Linearization of the full system at  this 
equilibrium involves the 32 x 32 matrix block which diagonalizes as follows : 
(Re (aoz), Re (ao4)) ,  a 2 x 2 matrix; (Im (ao2), Im (ao4)), a 2 x 2 matrix ; Re (aol), 
Re (ao3), Re (ao5)) ,  a 3 x 3 matrix; (Tm (a,,,), Im (ao3), Im (ao5)) ,  a 3 x 3 matrix; 
(u-,,, a-13, uPl5, a,,, aI3,al5), a 12 x 12 matrix; and (aplz ,  a-14, ale, a,,), a 10 x I0 matrix. 
Selected eigenvalues (specifically those showing bifurcations) of these matrices are 
presented in Appendix R.7 One eigenvalue of (Im (ao2), Im (ao4)) has zero real part 
which corresponds to variations along the S1-circle of fixed points, its eigenvector 
being tangent to this circle. The eigenvalues of the matrices involving non-zero 
streamwise wavenumbers are always complex conjugate numbers due to the 
travelling character of the solution. For parameter values greater than 1.50, all 
eigenvalues have negative real parts, showing that the fixed point is stable. The first 
bifurcation occurs a t  a = 1.51 at  which an eigenvalue becomes positive in the 
imaginary part of zero streamwise, odd spanwise mode subspace. The fixed point 
becomes a saddle with a one-dimensional unstable manifold. l'his corresponds to  the 

t Full tables of the eigenvalucv can be obtained from the authors or the Editorial Office 
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Heisenberg parameter a Rehaviour 

CI 2 2.1 
2.1 > a 2 2.05 
2.05 > a: 2 1.84 

1.84 > CL 2 1.43 
1.43 > CL 2 1.23 

1.23 > CL 2 1.18 

1.18 > a 2 0.6 
0.6 > a > 0.4 

0.4 > CL 

trivial solution : at,k = 0 ,  V(Z, k )  is the global attractor 
stable fixed point : ao2, ao4 $: 0, other modes are zero 
intermittency (I) in the subspace: al ,k  = 0, V k ;  ao2,ao4 4 0 ;  
ao,k. =01 V k  9 2,4 between bursts; 
oscillations) 

$: 0,  V k  during bursts (no 

stable fixed point : aO2, ao4 + 0, other modes are zero 
intermittency (11) in the subspace‘ al ,k  = 0 ,  V k :  uo2,ao4 + 0 ;  
aO,k = 0, V k  =+ 2, 4 between bursts; 
(uol, a,,, ao5 oscillate) 

between bursts; az,k + 0,  V l ,  k during bursts 

+ 0,  Vk during bursts 

intermittency (111) in the full space. ao2, uo4 + 0 ;  

complex behaviour in the subspace: = 0,  V k ;  9 0, Vk 
intermittency (IV) in the full space: complex behaviour in the 

complex behaviour in the full space: 

= 0, V k  9 2 ,4  

subspace between bursts; al,k =k 0 ,  V1, k during bursts 
+ 0,  V l ,  k 

TABLE 2 .  Qualitative dynamical behaviour in the 54-dimensional system. 
0 denotes the zero number. 

appearance of the first window of intermittency. The fixed point recovers its stability 
in a small window (all eigenvalues are negative for a = 1.10 and 1.20) and a Hopf 
bifurcation occixs at a = 1.06, consistently with numerical integrations which show 
that solutions become intermittent again. The fixed point is then a saddle with a two- 
dimensional unstable manifold in the zero streamwise, odd spanwise subspace. 
Another Hopf bifurcation occurs a t  about a = 0.91, where an eigenvalue crosses the 
imaginary axis in the non-zero streamwise, odd spanwise subspace. This opens the 
third window of intermittency where the non-zero streamwise modes burst along 
with the zero streamwise, odd spanwise modes. The fixed point becomes a saddle 
point with a four-dimensional unstable manifold. At  the other real fixed point, 
ao2 = +r2,ao4 = -r4,  the eigenvalues are all the same, except those of the real and 
imaginary part of (a,,, un3, ao5) which are interchanged, making the unstable 
manifolds in the first and second windows of intermittency lie in the 
(Re (aol), Re (an3), Re (an5)), instead of (Im (a,,), Im (an3), Im (an5)) subspace. A t  all 
other points of the circle, the unstable manifold is a rotation of one of these two 
manifolds and all odd spanwise modes burst, as seen in numerical integrations of the 
system. 

In  this stability analysis, we have shown that the first two windows of inter- 
mittency appear from a linear instability of the equilibria in the zero streamwise 
subspace while the third window emerges through a linear instability of the non-zero 
streamwise modes. In  all cases, the unstable manifold of the fixed points lies in the 
odd spanwise subspace. Nevertheless, the numerical integration shows that the non- 
zero streamwise, even spanwise modes burst as well, which can be understood 
through the nonlinear action of the quadratic terms al.k,ut-l.,k-k,. Obviously, if k is 
even, Ic’ and k - k’ are both odd or even and if k is odd, one is odd and the other even. 
This implies that if odd spanwise modes burst, the even spanwise modes get triggered 
by quadratic nonlinearities involving odd/odd spanwise mode interactions. Mor- 
eover, once the even spanwise modes are carried sufficiently far away from the fixed- 
point values, the nonlinear even/even spanwise modes interactions also contribute to 
the burst. This leads t o  a nonlinear instability which is delayed in time as observed 
in time series (figure 3). 

The results have been obtained using a computational cell of 666 wall units in the 



Node interaction rrhodels for near-wall turbulence 17 1 

x, direction. Carrying out integrations using cells of streamwise lengths 1000 and 
2000 wall units, we observe the same heteroclinic connections. 

6 2 .  54-dimensional model 
We now investigate the action of a second streamwise harmonic on the previous 
system which leads to 54 dimensions keeping the streamwise length of thp box 
T,: = 666. Both the properties and the solutions of the equations are similar to those 
of the 321) model. The numerical integration of the equations leads to the bifurcation 
behaviour shown in table 2 and time series of typical solutions in window ITT are 
displayed in figure 6. 

As in the case of the 321) dynamical system, we compute the eigenvalues of the 
Jacobian matrix at the fixed point ao2 = - r 2 ,  ao4 = -r4. Linearization of the full 
system is achieved by studying the 54 x 54 matrix block which diagonalizes as 
follows: (Re (ao2),  Re (ao4)),  a 2 x 2 matrix; (Im (ao2) ,  Im (ao2)) ,  a 2 x 2 matrix; 
(Re (aol), Re (ao3), Re (a,,)), a 3 x 3 matrix; (Im (aol). Im (ao3), I m  (a,,)), a 3 x 3 matrix; 
(a-12, a-14, a,,, a I2 ,  a,,), a 10 x 10 matrix; (apll, a-13, a-15, a,,, a13, a,,), a 12 x 12 matrix; 
(a-2l, a-23, a-25, a2,, aZ3, a,,), a 12 x 12 matrix; and (a-22, a-24, az0, aZ2,  aZ4), a 10 x 10 
matrix. Selected eigenvalues (specifically those showing bifurcations) of these 
matrices are presented in Appendix C . t  As in the 32D dynamical system, we observe 
the first two bifurcations through which the first and second windows of 
intermittency appear in the (Im (aol), Im (ao3), Tm (ao5)) subspace. The third 
window emerges through a (subcritical) Hopf bifurcation occurring in the 
(a..ll, c13, a-15, all. a13, Q ~ , )  subspace. Although the eigenvalues of the second non- 
zero streamwise mode subspace stay negative for all these parameter values, 
numerical integrations show that the second non-zero streamwise modes burst as 
well as the first one. As for the excitation of even spanwise modes in t h e  32D model, 
the second streamwise modes become activated, with a delay, through nonlinear 
quadratic interactions. Odd spanwisc modes become destabilized first, followed by 
the even spanwise modes (for the reason mentioned above). 

In view of the hierarchy of instabilities presented above, one can ask whether 
higher-order streamwise harmonics will burst as well. Experimental visualizations 
have shown that sublayer bursting events are characterized by generation of fine- 
scale turbulence. It is obvious that this cascade of energy towards finer scales is not 
limited to two harmonics. The study of the 54D dynamical system shows that once 
the first non-zero streamwise modes burst through a subcritical Hopf bifurcation, the 
second non-zero streamwise modes burst also due t o  nonlinear interactions. Would 
higher harmonics be triggered in the same manner Z This is obviously the case as an 
examination of the quadratic terms reveals: in the same way the 1 = 2 modes are 
destabilized due to  1 = 1/Z = 1 interactions, the I = 3 modes due to 1 = t/Z = 2 
interactions, the 1 = 4 modes due to  1 = 111 = 3 and 1 = 211 = 2 interactions, etc. 

6.3. Models involving two ncirmal modes 
We now briefly describe results obtained from a model involving two normal modes, 
two streamwise Fourier modes and six spanwise Fourier modes, including 64 
dimensions, the periodic box size being the same as in the two previous sections. At 
large 01 values, we observe the stable trivial (zero) solution from which a fixed point 
in the a;:;, agi (n = 1,2) space bifurcates. As a is reduced further, a fixed point in the 
a c i  (n = 1,2  ; k: = 1,. . .5) subspace becomes stable. For lower 01 values, a window of 
intermittency appears, where the non-zero streamwise modes become excited 
intermittently. Solutions stay quasi-steady in the zero streamwise subspace before 

t Full tables of the eigenvalues can be obtained from the authors or the Editorial Office. 
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FIGCRE 6. Typical solution in window I11 of intermittency for the 54D system at the parameter 
value a = 1.2, for a time interval At+ = 5652. Time series of the real parts of uo1,ao2,ao3, 
a04 ,  ao5r a-11, a-12, a-13, a-14, a-16, a-zi, a-22, a-as, a-20 a-25. 

Heisenberg parameter a Behaviour 

u 2 1.9 
1.9 7 a 2 1.7 
1.7 > u 2 0.9 
0.9 > a 2 0.6 

0.6 > a 2  0.4 
0.4 > u 2 0.2 

trivial solution: ap) = 0, V(n, 1, k )  is the global attractor 
stable fixed point a::, UP: + 0, V n ,  other modes are zero 
stable fixed point: agk f 0, V(n, k ) ,  other modes are zero 
intermittency in the full subspace a:', $. 0, V(n, k )  between bursts ; 

complex solution: u$ + 0, V(n, I ,  k )  
intermittency in the full space similar to window IV in the 32D 
model : complex behaviour in the aEi subspace V(n, k )  between 
bursts; 

a$ ?= O , V ( a ,  1 ,  k )  during bursts 

+ 0, V(n, 1, k )  during bursts 
0.2 7 ci complex solution : a!;$ + 0, V(n, I, k )  

TABLE 3. Qualitative dynamical behaviour in the 64-dimensional system. 
0 denotes the zero complex number. 

and after bursting. As a is reduced further, we observe a solution similar to the fourth 
window of intermittency in the systems discussed above. The details of the 
bifurcation behaviour are given in table 3. 

7. Identification of flow structures 
We now concentrate on the kinematics and dynamics of ' coherent structures ' as 

they appear in our models. Structures of different types have been extensively 
investigated from both visualization experiments and direct numerical simulations. 

16 FLM 247 
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FIGURE 7. Vector representation of a cross-section of the flow, i.e. the two velocity components 
u2, u3 in an (z2, 2,)-plane during a 'quiescent' period of the intermittent solution a t  the parameter 
value a = 0.87. The spanwise (horizontal) and normal (vertical) dimensions of the box are 333 and 
40 wall units respectively. 

However, the connection between these structures is not yet well understood. We 
show that most structures previously reported in the literature are present in our 
systems and that they are all connected to each other. To illustrate this connection, 
we first describe the fixed-point solutions in physical space. We then analyse flow 
fields during bursts, concentrating on both the spatial distribution of flow patterns 
and their temporal behaviour. The solutions discussed in this and the next sections 
have been obtained via integrations of the 32-dimensional system discussed in $6.1. 
Clearly, solutions of' higher-dimensional models previously studied lead to similar 
results. 

7.1. Structures in a jixed-point solution 

Every fixed point, or steady solution, described above appears in the (k, = 0)- 
subspace, representing infinitely long structures in the streamwise direction. 
Although such a flow arises as an artifact of the unrealistically large value of the 
transport coefficient a, it gives insight into the physics of more complicated 
solutions. This is because the rolls it represents are a recurrent basic pattern 
contained in realistic flows, themselves being connected to other types of structures. 
To illustrate this, we follow Kline & Robinson's (1990) survey where one can find a 
complete description of a rich variety of structures identified in a large number of 
contributions (see also Robinson's 1991 review). We now discuss only the first five 
structure categories as the others seem to have been observed by a few researchers 
only or are not relevant to the present work (outer structures, for instance). Figure 
7 (see also the fixed-point solution in Aubry et al. 1988) shows a vectorial plot of the 
instantaneous velocity components u2 and us in a cell of dimension 40 x 333 lying in 
the (xz,x3)-plane. The flow field consists of' counter-rotating roll pairs with the 
updraft regions in between the rolls located a t  x, = 0 and x, = 167. In  this simplistic 
solution, the rolls are symmetric and always occur in pairs. This is merely a 
consequence of the reflection symmetry of the two-point correlations (and the 
equations) which is then satisfied by the solution itself instantaneously. 

7.1.1. Low speed streaks in the region x2 < 10 

Streaks or streamwise filaments of low-speed outward-moving fluid observed in the 
near-wall region, have been observed by Kline et al. (1967). Since then, their 
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FIGURE 8. Distribution of the streamwise velocity component, mean ( U )  (-----) and instantaneous 
( U +  u) (-), as a function of xg a t  2: = 2.8 from the intermittent solution at the parameter value 
a = 0.87 in the 32D system. 

z 

FIGURE 9. Distribution of the normal velocity component u2 as a function of 2: a t  xl = 2.8 
from the intermittent solution a t  the parameter value a = 0.87 in the 32D system. 

existence has been reported by many researchers in the field who all agree on a mean 
spanwise spacing of approximately 100 wall units. Smith & Metzler (1983) found that 
the probability distribution function of the low-speed structure around the mean 
value of 100 wall units is log-normal and has a dense range from 60 to 180 wall units. 

We now seek the location of the slow outward-moving streaks from our results, 
Figure 8 represents the mean and instantaneous streamwise velocity profiles, U and 
G, as a function of apanwise location at the wall distance x, = 2.8 while figure 9 shows 
the normal component, w. It is clear that the slow fluid located at x3 = 0 and 
x3 = 166, in between the rolls (see figure 7) has maximum, positive normal velocity 
and corresponds to the outward-moving streaks (consistently with other authors’ 
findings (e.g. Blackwelder & Eckelmann 1979)). The spanwise extent of such streaks 
is about 30 viscous lengths, in agreement with experimental observations. 

16.2 
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z 
FIGURE 10. Distribution of the streamwise velocity, mean ( U )  (-----) and instantaneous (T!+u) 
(--), as a function of xi at xi = 38.5 from the intermittent solution at the parameter value 
a = 0.87 in the 32D system. 

2 

FIGURE 11. Distribution of normal velocity uz as a function of r: at zi = 38.5 from the 
intermittent solution at the parameter value CL = 0.87 in the 32D system. 

7.1.2. Ejections 

The low-speed streaks in the sublayer get slightly lifted away from the wall as they 
propagate downstream until they reach a location at which their rate of ejection 
increases significantly. These ejection motions, which have been termed lifting (e.g. 
Kim et al. 1971 ; Corino & Brodkey 1969; Willmarth & Lu 1972, Smith & Metzler 
1983; and other workers), are experimentally observed primarily in the region 
10 < x2 < 40. 

Ejections are clear in figure 7 where strong outward motions are located in between 
the rolls, above the sublayer streaks. (See also figures 10 and 11 where the streamwise 
and normal velocity components are presented as a function of xg, a t  x2 = 38.5.) In 
this flow picture, the normal velocity increase is simply due to the conservation of 
mass. This suggests that streaks and ejections are a part of the same structure, 
without the need for any dynamics t o  be involved. However, ejections can be 
weakened or strengthened by lateral motJions of the rolls with respect to each other. 
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7.1.3. Swpeps of high-speed Juid towards the wall 
While flow visualizations do not clearly exhibit inward sweeps of high-speed fluids, 

their presence is needed from continuity and has been detected by quadrant analysis 
(Willmarth & Lu 1972; Willmarth & Bogar 1977). They have been shown to 
significantly contribute to the Reynolds shear stress, and therefore t o  the turbulence 
production. 

It is clear from figures 7,  8 and 9 that the spanwise outer regions of the rolls where 
fluid moves toward the wall have an excess streamwise velocity compared to the 
mean, thus constituting the sweeps. Also, in agreement with experimental findings. 
the sweep regions observed here are larger compared with the streaks. 

To conclude, the picture of the rolls, in the framework of sweeps and streaks, can 
be described as alternate regions of elongated patterns of fluid having high and low 
streamwise momentum (see e.g. Gupta, Laufer & Kaplan 1971). 

7.1.4. Vortical structures 
Let us first recall that there has been some controversy concerning the definition 

of three-dimensional vortical structures. Robinson et al. (1990) propose identifying 
near-circular fluid paths, around a core, in the frame of reference of the core. Other 
researchers plot contours of constant enstrophy or trace vortex lines in three- 
dimensional space. In this paper we adopt the last possibility. Vortical structures 
identified so far in the wall region fall essentially in two broad categories. The first 
of these consists of horseshoe or hairpin shaped structures, the existence ofwhich was 
first proposed by Theodorsen (1952). Later, using a smoke visualization technique, 
Head & Randyopadhyay (1981) established the presence of elongated hairpin 
vortices a t  high Reynolds number and less elongated horseshoe vortices a t  low 
Reynolds numbers. Moin & Kim (1982) obtained evidence for the existence of such 
structures in a direct numerical simulation of a channel flow, while Kim (1987) 
studied their temporal evolution. The second vortical structure category detected in 
wall turbulence is that of ‘ streamwise vortices ’, corresponding to nearly circular 
patterns in the streamlines of the fluctuating flow cross-section. Bakewell & Lumley 
(1967) and Blackwelder & Eckelmann (1979) used statistical techniques to establish 
their existence (actually the first authors used the POD), Smith & Schwartz (1983), 
investigating individual realizations, show that vortices are present at a given point 
only intermittently. 

Clearly, the rolls in figure 7 correspond to what other authors refer to as 
‘streamwise vortices’, although the vorticity is not only streamwise. In fact, we now 
show that the vortex lines corresponding to a pair of counter-rotating rolls have a 
horseshoe shape. Noting that the spanwine gradient of the streamwise velocity is 
negative in the left roll and positive in the right one and recalling that streamwise 
variations are small, it is easy to see that the normal vorticity is negative in the left 
roll and positive in the right one. Moreover, the  spanwise vorticity , which essentially 
originates from the mean velocity gradient, is negative in both regions. This 
elementary argument implies that the vortex lines have a horseshoe shape with its 
head lying in between the rolls. If the circulation plane of the rolls is inclined to the 
wall (which is indeed the case so that the Reynolds shear stress is non-zero), the 
vortex lines are also inclined. Vortex lines with a horseshoe shape are shown in figure 
12. Consistently with this scenario, a larger mean velocity, characteristic of higher 
Reynolds numbers, would increase the Reynolds shear stress by decreasing the mean 
distance between two rolls of the same pair and would make horseshoes more narrow 
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FIGURE 12. Vortex lines at various vertical (x2) positions during it ‘quiescent ’ period of the solution 
at the parameter value a = 0.87 in the 32D system. The horizontal plane is (q, ra), x1 being the 
largest dimension. 

and more elongated. Following the above arguments, it  is clear that the reflection 
symmetry of the rolls accounts for the symmetry of the horseshoe. In  more complex 
solutions, and most probably in the real flow, both the rolls and the horseshoe will 
be asymmetrical most of the time. In  particular, when a roll is isolated, the vortex 
lines take a ‘hook-like’ shape. 

7.1.5. Near-wall shear layers 
Shear layers with a normal and spanwise gradient of streamwise velocity have 

been identified, for example by Corino & Brodkey (1969) visualizing the flow, and by 
Kreplin & Eckelmann (1979) and by Johansson, Alfredsson & Eckelmann (1987) 
using probe measurements. Changes in the streamwise velocity have also been 
detected by VITA techniques (see e.g. Bogard & Tiederman 1987). Recently, 
Jimenez et al. (1988) used contours of spanwise vorticity in a numerically simulated 
channel flow to establish that the near-wall region is dominated by intense three- 
dimensional shear layers, whose instability should lead to bursts. Blackwelder & 
Swearingen (1990) compared streamwise vortices near a flat wall with Gortler 
vortices next to a concave wall. They argue that, in both cases, these vortices are the 
cause of inflexion points in the U(x) profile. 

The presence of rolls in our model leads to  both vertical and horizontal shear 
layers. While the former comes from the juxtaposition of slow and fast fluid (streaks 
and sweeps) in the spanwise direction (see figures 7 and 8), the latter is a feature of 
the streamwise velocity gradient : an inflexion point arises in the sweep region a t  the 
interface between the fluid very close to the wall which is accelerated in its sweep 
motion and that slightly away (2, > 15). 

7.1.6. Concluding remarks on the structures 
We find a one-to-one correspondence between the various patterns previously 

reported in the near-wall turbulence literature. Streamwise rolls, streaks, sweeps, 
horseshoe shaped vortical structures and shear layers are all a part of the same 
structure : all depends on which physical quantity is investigated. It is particularly 
interesting to note that the horseshoe and rolls are merely the same entity (so that 
the rolls are not, strictly speaking, the legs of the horseshoe, as proposed by other 
authors). This relation suggests a simplistic mechanism for the rolls formation 
consisting in stretching of the spanwise vorticity of the laminar flow. Although we 
made the above observations based on a simplified solution, it is clear that these 
relations should remain valid locally in the real flow (as noticed above, the presence 
of a symmetric pair is only an artifact of both the steadiness of the solution and the 
spanwise reflection symmetry). Finally, we would like to point out that our 



Mode interaction models for near-wall turbulence 479 

...... 

. .  ......... . _ _ _  _ . _ _ _ . _ _ _ _ . _  ..-___. . _ - - - - .  .------ . . - - _ _ .  ................ ------.-. ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6)  

(ii) (viii) 

........................ . . .  __ - .  . . - - .  . . . .  ._ - .  . .  . _ _ ,  . ___-. . . . . . . . . . . . . . .  . . . . . . . . . . . . . _ _ _ .  ............................... 

(iii) 1 1 . ; ;  . ........................-- 
I \ - , ,  .................... ---..-- <.-* ........................ ..-- ........................ . .*----- ................................ E ................................ I-,..:;-<. .__, .................. 
.... . . . .  ..... . . . . . . .  J 

i , ; . ; ;  . . . . . . .  
;!;.:;::::::: 
,;,;; ; . ' I ' . . -  r- c::::: / I % , ,  ,::::::: :::::::: 

. . . . . . . . . . . . . . . . . . .  ...........,. . I . \ , .  ...-,,. ..... .*,-,\. . '  I 
. , .  

. \ . - * * - . .  ......... :!!:::::\:I ..--.......*.......I - . .  
. \-I ........... .-"-.,. ................ . .  

- ,>_._. , I  ............ --,, . . . . .  .; 
::::::::::...- - , . . - -  - . , . . .  -,,, ....... . - - _ - .  ..... ...I 
................... . . . . .  --,, \I ................. .4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

___.. .......... _.- __., .... - - ~ .  
. . . . . . . . . . . . . - I  . . . . .  - _ . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  tr:::: 1 ::::I ::::I:: :: ::: : : ::::: : : I  

......... 

-----,,, ........ . .  ........ ---_ . . . .  (xii) 
, -  . -  . , . -  - 

_-I - . , . - * .---_ - . - - . .-_, , ,_*,I . , 
--I-. . .-..-_-__.-__ _ _ _ _ ,  .--... . ..--.- ..._. _ - - - _  . . . . . . . . . .  . . _ . . .  . . . . . . . . . . . . . . . .  

_____- *,... ..... --..-_, . .*. . - - ,  . .. . ..------. 
. - _ - -_ ,  I ..... . . . . . . ._. . . . . . . . . . . . . . . . . . . . . . . . . .  

FIGUKE 13. Time evolution of the cross-section of the flow u2, u, in an (x2, x,)-plane between two 
bursts in window I V  of intermittency for the 32D system at the parameter value a = 0.2. The box 
dimensions are the same as those in figure 7 .  Time increases from (i) to (xii) with a time step of 
37.68. 

deductions are of a kinematical nature. Clearly, the rolls - and all the 'structures' 
associated with them - are dynamically active: they interact, move, break and 
re-form. In  our fixed-point solution, these dynamics are damped by an excessive eddy 
viscosity introduced in the system. In  the next paragraph, we describe the temporal 
behaviour of the eddies as we drop the artifical damping. 

7.2. Structures in time-evolving solutions 
80 far we have described the eddy structure according to the steady solution of our 
models. When the flow gains 8ome dynamics, as of course it does in real turbulence, 
observation of the temporal evolution of velocity vectors in a cross-section of the flow 
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FIGURE 14. Contours of the streamwise velocity component u1 in an (x1,x3) plane located at  
zi = 5.6,  for a solution in window IV of intermittency when all the modes are activated in the 
solution shown in figure 13. Solid and dashed lines represent positive and negative values, 
respectively. Parts ( a )  and (b )  correspond to two times such that At’ = 9.42, showing the streak and 
sweep advection downstream at a speed u, 16. The streamwise (horizontal) and spanwise 
(vertical) dimensions of the box are 666 and 333 wall units respectively. 

FIGURE 15. Instantaneous vortex lines a t  various streamwise locations during window IV of 
intermittency during a burst, i.e. when all the modes are excited in the solution shown in figure 13. 
The vertical axis is the normal direction and the mean flow is from lower left to upper right. The 
streamwise, spanwise and normal dimensions of the box are 450, 100 and 40 wall units respectively. 

shows that the reflection symmetry is often broken (except in the first three windows 
of intermittency). Then ‘structures’ are very similar to those previously described, 
the main difference being that the rolls appear isolated or in asymmetric pairs. 
Figure 13 displays, for a parameter value a = 0.2 (window I V  of intermittency), 
instantaneous velocity vectors in the cross-stream plane during a time interval in 
between two bursts. Symmetric, asymmetric and isolated rolls are present, 
accompanied by sweeps, streaks, horseshoe (or hook-like) vortex lines and three- 
dimensional shear layers. 

Since the relatively ‘ quiescent ’ periods between the bursts take place in the zero 
streamwise subspace, all physical structures are infinitely long in the streamwise 
direction during these times. However, as time evolves and the fluid particles are 
advected downstream, a streamwise instability takes place : this infinite dimension 
breaks up; the solution bursts into eddies of finite length which are advected 
downstream. Contours of the streamwise velocity fluctuations in an (xl, x,)-plane 
near the wall (x2 = 2.8) are shown in figure 14. As expected, the patterns consist of 
elongated structures, streaks and sweeps. They have a streamwise length of about 
500 wall units and a spanwise width of nearly 40 wall units. This figure resembles 
those obtained by other researchers (e.g. Moin & Kim 1982). The streamwise velocity 
contours for two different times (figure 14a, b )  show the advection of the structures 
downstream a t  a speed u, x 16, in agreement with our previous observation of the 
time series in $6. Figure 15 shows a perspective view of various vortex lines 
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X l  

FIGURE 16. Contours of the spanwise vortioity in an (q, x,)-plane located at xi = 250, for a solution 
in the window IV of intermittency in the 321) system at CL = 0.2 during a, burst, i.e. when all the 
modes are activated. The streamwise and normal dimensions of the box are 666 and 40 respectively. 

corresponding to a slow-moving streak in between two symmetric rolls : as explained 
in $7.1.4, these lines have a horseshoe shape. Our picture resembles that of Kim & 
Moin (1 986) and Kim (1987). Figure 16 displays contours of spanwise vorticity in an 
(xl, x,)-plane in our solution and shows thin layers of spanwise vorticity protruding 
out from the wall as described by Jimenez et al. (1988) (up t o  y+ = 40). 

Finally, the bursting period is large, around 4000 time units at the parameter value 
a = 0.2 for instance. As recalled above, the interburst time depends on both the 
eigenvalue with the largest positive real part A, and the ‘external noise’ present in 
the system. More precisely, one can write Th = ( l /A , )  (In ( l /c)  + O(1)) where 8 is the 
root mean square of the noise (see Stone & Holmes 1989, 1990). Our linear stability 
analysis of the 32D system gives a value for A, of about 0.2-0.4 in window I1 of 
intermittency while it is much higher in window 111, around 1 a t  a = 0.87 and even 
higher at lower a values. In the presence of numerical round-off errors only, it was 
observed in the 10D model that the interburst time increases with time. This effect, 
which should be present in an ideal system without noise, cannot be detected in the 
32D (or 54D) model of this paper when streamwise modes become activated due to 
a much larger eigenvalue A, which prevents Th from increasing even in the presence 
of reduced noise. Moreover, since the A, increases as 01 decreases, the interburst time, 
at the same noise level, decreases. For a most unstable eigenvalue on the order of 1, 
it is clear that the interburst timescaling depends on c in an essential way. Pressure 
fluctuations a t  the top of the layer, neglected in the calculations presented here, may 
then play an important role in this scaling. 

8. Criteria for the choice of a realistic Heisenberg parameter value 
I n  this study, as in that of Aubry et al. (1988), we have used the Heisenberg 

parameter 01 as a bifurcation parameter. Although a should vary slightly in time, it 
has been assumed constant, as in Smagorinsky’s model. The issue is then to 
determine realistic values of a. For instance, it  is clear that solutions in the fourth 
window of intermittency represent more realistic velocity fields than the steady 
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FIGURE 17. Distribution of the energy ratiof (see $8) as a function of the 
parameter a in the 32D system. 

solutions obtained for large dissipation values. We now propose two criteria for 
selecting appropriate a values. 

The first one consists in examining the kinetic energy content of the solutions 
obtained at various a values. On the one hand, the energy present in the truncated 
series is lower than that of the original flow. On the other hand, due to the truncation, 
dissipation is under-represented compared with its experimental value and therefore 
it leads the energy to  be larger than it should. The Heisenberg model, which 
represents the mean action of the small scales, tends to  compensate the latter effect 
so that the solution of the relatively low-dimensional dynamical system can 
approach the truncated solution of the Navier-Stokes equation and thus mimic the 
boundary-layer flow. Obviously, it can reach this purpose for one parameter value 
only. Indeed, large a values will make the energy too small while small a values will 
make the energy too high. In  the ‘realistic’ model, the energy of each mode should 
be close to the corresponding eigenvalue. One way to evaluate the best 01 value is to 
compute the kinetic energy given by the dynamical system and compare it to that 
of the original truncated flow. We then define f as the ratio between the energy of the 
obtained solution and the total energy of the flow, the latter being approximated by 
considering all the eigenvalues experimentally determined. The curve f versus 01 

(figure 17) in the 32D system shows that the energy decays monotonically with a, 
which is consistent with our previous discussion, and that f coincides with the 
original (renormalized) energy content of the truncated flow, namely 0.75, when a is 
approximately 0.48. (If one wants to recover the total energy of the flow ( f  = l ) ,  a 
becomes 0.2.) 

Second, the coefficients corresponding to a realistic flow field should be 
uncorrelated (see relation ( 5 ) )  as the decomposition into orthogonal modes and 
uncorrelated coefficients is unique. We then define 

with m = n = 1 for the 32- and 54-dimensional systems. If (5 )  is satisfied, R& = R,, 
is the identity matrix. When a equals the above values, R,, is indeed very close to  
a diagonal matrix, the largest non-diagonal element being on the order of lop2. 

It is interesting to note that the corresponding solutions belong to the fourth 
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FIGURE 18. (a) Mean velocity, U, as a function of normal distance xz for the 32D system at the 
parameter value a = 0.2. The dashed line represents the log profile U = ( 1 / ~ )  In x2 +B with K = 0.41 
and B = 5.8 (Sreenivasan 1989). (b) Root mean square (streamwise and normal) velocity 
fluctuations as a function of wall distance 2, for the same solution as (a). Solid line: r.m.s. of ul, 
dashed line: r.m.8. of u2. ( c )  Distribution of (u, up) as a function of x2 for the same solution as (a). 
Symbols are experimental values from Eckelmann (1974) at Re = 8200 (in (b) +, r.m.s. of u l ;  x , 
r.m.s. of uz). 
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window of intermittency and that they indeed appear quite realistic, based on 
qualitative arguments (see our discussion in $6) .  In  this window, the mean velocity 
profile, the distribution of the root mean square velocity components and the 
Reynolds shear stress compare fairly well with Eckelmann’s experimental results 
(Eckelmann 1974) (except for the normal velocity which is too low) (figure lS(a-c)). 
In particular, the mean velocity displays a logarithmic region. (All the above 
averages are both temporal and spatial, i.e. streamwise and spanwise.) 

9. Conclusions 
The intermittent behaviour reported in Aubry et al. (1988) persists when more 

streamwise and normal modes are added to the dynamical system as it seems to be 
a generic property of the equations due to their symmetry invariance. Intermittency 
consists of high-level activity which alternates with more quiescent periods. At 
realistic values of the Heisenberg parameter, (non-zero) streamwise modes are 
always active during the bursts and collapse otherwise while spanwise modes are 
dynamically active at all times. Intermittently, infinitely long flow structures 
oscillate and suddenly burst downstream, becoming of finite streamwise length. 
During the bursts, they are convected downstream a t  the mean velocity value a t  the 
top of the layer and their amplitude oscillates rapidly as high frequencies are excited. 
The flow ‘structures’ involved in these motions are streamwise rolls, streaks, sweeps, 
horseshoe vortex lines, and vertical and horizontal shear layers, in good agreement 
with findings of experimental and numerical studies. In  phase space, intermittency 
is due to orbits close to  heteroclinic or homoclinic cycles connecting complex 
hyperbolic limit sets. It is interesting to note that our findings, clearly, do not depend 
on the specific resolution chosen : results of 32D and 54D models, including two and 
three (positive) streamwise modes are very similar : the basic intermittency, as 
described above, is present in both models and the instability is due to a Hopf 
bifurcation with a four-dimensional unstable manifold. The extra modes in the 54D 
model participate in bursting through a nonlinear instability process, as would 
higher-order modes in finer resolutions. The influence of higher normal modes, 
studied in a 64D model, alters only the basic quiescent state which is then a 
combination of these modes (in physical space, the basic rolls are still present). 
Again, intermittent events still occur and remain of the same nature. 

When streamwise modes are involved, the connecting orbits in the spacetime 
domain represent quasi-travelling waves. Although it is not clear which part of the 
symmetry group SO(2) x 0(2) is directly involved in the (non-trivial) saddle-saddle 
connection, the streamwise SO(2) group certainly plays an important role. A 
theoretical study of this dynamical system structure may lead to a better 
understanding of spatio-temporal chaos as observed in open flow systems. A similar 
intermittency has been indeed observed in some solutions of the Kuramoto- 
Sivashinsky equation in a ‘spatio-temporal chaotic regime’, so named by Hyman 
et al. (1986). There also, as shown by Aubry & Lian (1992a), non-trivial limit sets are 
connected by quasi-travelling waves. 
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Appendix A. Equations for the coefficients of the ODES 

b y m '  = (LlL,):[(b2+k2)8mn 

Here, i is the complex number, 2/ - 1. D denotes the derivative operator with respect 
to x2: D = d/dx,. k denotes the wavenumber ( I ,  k ) ,  and Qkj = ikj if j = 1,3  or = D if 
j = 2. 

a 

1.50 
1.40 
1.30 
1.20 
1.10 
1 .oo 

a 

0.95 
0.90 
0.89 

Appendix B. Selected eigenvalues of the 32-dimensional system linearized 
about a fixed point for different subsystems 

Eigenvalues of the subsystem (Im (aol), Im (ao3), Im (ao,)) 

- 37.336 - 4.694 0.004 
- 33.640 - 3.731 0.453 
- 29.876 - 2.654 0.420 
-26.042 -0.987 -0.321 
-22.156 (-0.216, 1.476) 
- 18.287 (0.221, 2.089) 

Eigenvalues of the subsystem (aFll ,  a-13, a-15, a,,, a13 and a15) 

(-43, 123) (-41,71) (-32, 106) (-32, 100) (-14,65) (-0.53,gO) 
( - 40, 120) ( - 38,68) ( -30,98) ( - 30, 104) ( - 14,62) (0.41,88) 
(-40, 119) (-38, 68) (-30, 97) (-29, 103) (-13, 61) (0.58, 88) 

(a ,  b )  denotes the complex conjugate pair a+%, a-ib. 

Appendix C. Selected eigenvalues of the 54-dimensional system linearized 
about a fixed point for different subsysems 

a Eigenvalues of the subsystem (Im (aol), Im (ao3), Im (ao5))  

2.10 -36.671 
2.00 -34.062 
1.90 -31.420 
1.85 -30.085 
1.75 -27.389 
1.65 -24.659 
1.55 -21.909 
1.45 -19.164 
1.40 -17.810 

-4.672 
- 3.973 
-3.221 
- 2.804 
- 1.749 

( -  0.695, 
(-0.382, 
( - 0.069, 

(0.091, 

-0.164 
0.110 
0.143 
0.087 

1.032) 
1.630) 
2.047) 
2.219) 

-0.288 
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a Eigenvalues of the subsystem (a-ll, a,,, u13 and u15) 

S. Sanghi and N .  Aubry 

1.25 (-39, 125) (-38,69) (-30, 104) (-29, 110) (-14,68) (-0.17, 95) 
1.22 (-38, 124) (-37, 68) (-29, 103) (-27, 109) (-14, 67) (0.20, 94) 
1.21 ( - 38, 124) (-36, 68) (-29, 103) (-27, 109) ( -  14, 66) (0.32, 94) 

(a,  b )  denotes the complex conjugate pair a+ib, a-ib. 
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